Access Access during the LRF3 driven downtime. | Pbar | | | | | | | | | | | | |-------------|-----------------------|--|------------------------------|--|--|--|--|--|--|--|--| | ID | Туре | Title | Crew | | | | | | | | | | <u>8879</u> | Misc | Inspection of Pbar Rings. Found a dripper on D4SD13.
Thermal scan of magnets (results listed above). | Jim Morgan,
Brian Drendel | | | | | | | | | | <u>9150</u> | High Level
RF | Replace DRF1-2 Thermocouple Chassis. | Pete Seifrid,
Wes Mueller | | | | | | | | | | 9161 | Stochastic
Cooling | Core Betatron Vertical: Install new .085 flex lines
between the coupler and isolator at the front end of the
medium level plate for bands #1, #2, & #3 | Pete Seifrid,
Wes Mueller | | | | | | | | | Also, FESS turned on LP6 and turned off LP7. # Stacking - After the access, stacking was re-established. - Transfer Function measurements were made on the Core Vertical system. The data from these measurements is being analyzed to come up with a new calculated trombone settings. This will likely be done today and could be put in transparently. Due to significant band overlap, the best settings may be different than the best individual settings for each band. - On the evening shift, we turned up stacking. - Fixed the Stacktail Filter #3 position after the Fridge stabilized following the owl shift dry engine repairs. - Tuned up Core Vertical as best as we could without - Performance Numbers - Most in an hour: 22.88 mA at Wed Oct 22 08:57:32 CDT 2008 - Average Production 17.41 e-6/proton - Pbars stacked: 301.06 E10 in 16.15 hours of stacking. - We are still down in stack rate and production as we sort out our stochastic cooling issues. #### Transfers - Unstacked 295.2mA in 23 transfers over 11 sets. - Accumulator to MI Efficiency was 96% - Accumulator to RR Efficiency was 94% - Both numbers are down, partially due to Accumulator emittances. | Column
1
Number
_0_Pbar | Column 4 Number_3_Transfer Ti | Column
21
Number
_20_A:IB | Unstacked
(mA) | Column
24
Number
_23_R:BE | | Acc to RR
Eff | Number
_26_MI | n 28
Numbe
r_27_
MI | | | Tran
sfer
s | Sets | | |----------------------------------|-------------------------------|------------------------------------|-------------------|------------------------------------|--------|------------------|------------------|------------------------------|--------|--------|-------------------|------|----| | | Totals => | 7:00:00 AM | | 295.18 | | 277.75 | 94.09% | 285.21 | 285.03 | 96.62% | 96.56% | 23 | 11 | | 9710 | Thursday, October 23, 2008 | 6:18:20 AM | 36.96 | 24.33 | 205.63 | 22.99 | 94.49% | 23.37 | 23.25 | 96.08% | 95.60% | 2 | 1 | | 9709 | Thursday, October 23, 2008 | 5:15:33 AM | 36.53 | 23.42 | 183.04 | 22.21 | 94.84% | 22.73 | 22.79 | 97.05% | 97.32% | 2 | 1 | | 9708 | Thursday, October 23, 2008 | 4:11:17 AM | 36.52 | 22.67 | 161.16 | 21.29 | 93.87% | 21.87 | 21.58 | 96.44% | 95.18% | 2 | 1 | | 9707 | Thursday, October 23, 2008 | 3:07:35 AM | 36.40 | 22.82 | 140.14 | 21.56 | 94.48% | 21.83 | 22.12 | 95.63% | 96.90% | 2 | 1 | | 9706 | Thursday, October 23, 2008 | 1:59:40 AM | 37.33 | 21.52 | 118.88 | 20.17 | 93.74% | 20.64 | 20.83 | 95.93% | 96.81% | 2 | 1 | | 9705 | Thursday, October 23, 2008 | 12:59:28 AM | 36.21 | 21.97 | 98.84 | 20.77 | 94.56% | 21.34 | 20.94 | 97.15% | 95.34% | 2 | 1 | | 9704 | Wednesday, October 22, 2008 | 11:54:18 PM | 35.05 | 22.14 | 78.26 | 21.06 | 95.10% | 21.49 | 21.29 | 97.04% | 96.15% | 2 | 1 | | 9703 | Wednesday, October 22, 2008 | 10:51:30 PM | 35.33 | 22.69 | 57.36 | 21.55 | 95.01% | 21.92 | 22.31 | 96.64% | 98.32% | 2 | 1 | | 9702 | Wednesday, October 22, 2008 | 9:29:03 PM | 41.55 | 31.71 | 35.94 | 29.38 | 92.63% | 30.74 | 30.60 | 96.94% | 96.48% | 2 | 1 | | 9701 | Wednesday, October 22, 2008 | 10:57:09 AM | 65.66 | 55.50 | 360.98 | 51.74 | 93.24% | 54.05 | 54.00 | 97.40% | 97.31% | 3 | 1 | | 9700 | Wednesday, October 22, 2008 | 7:49:33 AM | 38.75 | 26.41 | 312.58 | 25.03 | 94.75% | 25.23 | 25.31 | 95.51% | 95.82% | 2 | 1 | ## Studies #### Requests ## 1. Put in new optimal Core Vertical Cooling Settings - Based on last nights TFM, we will put the new settings in place. - This can be done transparently while stacking. ## 2. Core Transverse Cooling Measurements Beam conditions: ### Background 0 - This is a repeat of the core cooling study completed first on the evening of Friday, October 3rd (See http://www-bd.fnal.gov/cgi-mach/machlog.pl? nb=pbar08&action=view&page=423&anchor=202716&hilite=20:27:16-), and then again on the morning of Friday, October 17th (10mA of beam behind for the next study. #### 4. Stacktail Transfer Function Measurements: - Conditions: - ☐ This study will start with 10mA leftover after a set of transfers. - The Study - □ The studiers are Steve Werkema and Ralph Pasquinelli. - ☐ The estimated study time is 4 hours. - If beam is lost during any of the measurements, we need to be able to stack for short periods of time to replace the beam for the next set of measurements. ## 5. Core momentum cooling study - Conditions - This study requires no stacking and circulating beam in the Accumulator. - Study - ☐ Test the cooling of the 4-8GHz momentum TWTs individually and then together. - This study will help determine if it would be worth while to consider adding an additional 4-8GHz momentum cooling tank during a future shutdown. - The studier is Dave Vander Meulen. - Estimated time without stacking is one hour. Estimated time without stacking is one hour. # **The Numbers** - Paul's Numbers - Most in an hour: 22.88 mA at Wed Oct 22 08:57:32 CDT 2008 - Best: 27.01 mA on 03-Jun-08 - Average Production 17.41 e-6/proton Best: 25.41 e-6/proton on 01/30/2008 - Average Protons on Target 6.90 e12 Best: 8.77 e12 on 07/24/2007 - Largest Stack 66.20 mA Best: 313.58 mA on 02/18/2008 - Al's Numbers - Stacking - Pbars stacked: 301.06 E10Time stacking: 16.15 Hr - □ Average stacking rate: 18.65 E10/Hr - Uptime - Number of pulses while in stacking mode: 24621 - Number of pulses with beam: 22015 - □ Fraction of up pulses was: 89.42% - The uptime's effect on the stacking numbers - □ Corrected time stacking: 14.44 Hr - Possible average stacking rate: 20.85 E10/Hr - Could have stacked: 336.70 E10/Hr - Recycler Transfers - □ Pbars sent to the Recycler: 295.18 E10 - □ Number of transfers: 23 - □ Number of transfer sets: 11 - □ Average Number of transfer per set: 2.09 - □ Time taken to shoot including reverse proton tuneup: 00.16 Hr - □ Transfer efficiency: 94.55% - Other Info - □ Average POT : 7.67 E12 - □ Average production: 17.82 pbars/E6 protons - * Red indicates a problem during data retrieval. See the message window for details. Other